M. Thomä, A. Gester, G. Wagner, B. Straß, B. Wolter, S. Benfer, D. K. Gowda, W. Fürbeth
Materialwiss. Werkstofftech. 2019, 50, 893–912
Friction stir welding as a solid‐state joining method with its comparatively low process temperatures is suitable for joining dissimilar materials like aluminum/magnesium or aluminum/steel. Such hybrid joints are of great interest regarding lightweight efforts in different industrial fields like the transportation area. The present work investigates the influence of additionally transmitted power ultrasound during the friction stir welding on the joint properties of EN AC‐48000/AZ91 and EN AW‐6061/DP600. Therefore, conventional friction stir welding was continuously compared to ultrasound enhanced friction stir welding. Light microscopic analysis and nondestructive testing of the joints using x‐ray and high frequency ultrasound show different morphologies of the nugget for the aluminum/magnesium joints as well as differences in the amount and size of steel particles in the nugget of aluminum/steel joints. Scanning electron microcopy proves differences in the thickness of continuous intermetallic layers for the aluminum/steel joints realized with and without power ultrasound. Regarding the tensile strength of the joints the power ultrasound leads to increased joint strengths for EN AC‐48000/AZ91 joints compared to a decrease for EN AW‐6061/DP600 joints. Corrosion investigations show an influence of the ultrasound power on the corrosion properties of EN AC‐48000/AZ91 joints which is attributed to a changed aluminum content in the nugget region. Because of the great potential difference between the magnesium and the nugget phase the transitional area exhibits strong galvanic corrosion. For EN AW‐6061/DP600 joints an increased corrosion caused by galvanic effects is not expected as the potentials of the EN AW‐6061 aluminum alloy and DP600 steel are very similar.