M. van Schie, W. Zhang, F. Tieves, D. S. Choi, C. B. Park, B. O. Burek, J. Z. Bloh, I. Ahrends, C. Paul, M. Alcalde, F. Hollmann
ACS Catal., 9 (2019), 7409-7417 doi:10.1021/acscatal.9b01341
Peroxygenases are very interesting catalysts for specific oxyfunctionalization chemistry. Instead of relying on complicated electron transport chains, they rely on simple hydrogen peroxide as stoichiometric oxidant. Their poor robustness against H2O2 can be addressed via in situ generation of H2O2. Here we report that simple graphitic carbon nitride (g-C3N4) is a promising photocatalyst to drive peroxygenase-catalyzed hydroxylation reactions. The system has been characterized outlining its scope but also its current limitations. In particular, spatial separation of the photocatalyst from the enzyme is shown as solution to circumvent the undesired inactivation of the biocatalyst. Overall, very promising turnover numbers of the biocatalyst of more than 60.000 have been achieved.