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Production of electricity from biogas is expanding rapidly in Germany. Until the end of
2012 about 7500 biogas plants with a total electrical power of 3.2 GW have been
installed. Unlike wind and solar energy, biogas is available around the clock, albeit with
seasonal variations and can be stored at a large scale. Because of its high conversion
efficiency (50-60%), the solid oxide fuel cell (SOFC) appears to be very attractive for
electricity and heat production from methane or biogas.

Background / Objectives

SOFCs are usually made of a ceramic-metallic anode (cermet), where Ni acts as catalyst
and electron-conductor, and Yttrium-Stabilized Zirconia (YSZ) as ionic conductor.
Lanthanum Strontium Manganite (LSM) is commonly used as cathode catalyst because
of its compatibility with zirconia-doped electrolytes. In order to maintain a fast O%-
transport, the cell should work at temperatures between 700-900°C (fig. 1). One of the
most important challenges is related to internal reforming of natural gas and biogas
according to following reactions:
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In carbon-rich fuel, however, CH, pyrolysis (CH, = 2H, + C) or CO disproportionation -
a product of CH, partial oxidation (2CO =» C + CO,) leads to carbon formation and
destruction of the Ni-Cermet (metal dusting). A reduction of the coking can be
achieved by addition of Sn, Pb, Sb or Bi[1]. Padeste et al. [2] found that small additions
of Sn (<1%) can selectively suppress the carbon formation at Ni. As possible
explanation, a lower solubility of carbon in the NiSn-modified material has been
postulated. This work reports on the development and catalytic evaluation of a Ni;Sn,
intermetallic phase for internal methane reforming in SOFC.

[1] I. Ul-Haque and D.L. Trimm, Catalyst for steam reforming of hydrocarbons, 1991
[2] C. Padeste, D. L. Trimm,, Catalysis Letters 17, (1993), 333-339.

Ni;Sn, preparation and characterisation

= 50g of NiSn was prepared by inductive heating of stoichiometric mixtures of Ni and
Sn in a centrifugal casting oven for 5 min at roughly 1500°C under vacuum.
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Evaluation of NiSn activity for CH, steam reforming

= Catalytic activity of Ni;Sn, pellet towards CH, reforming was investigated in a
ceramic tube reactor in the temperature range of 600-1000°C
= Reaction products were detected at the outlet by GC
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Influence of atmosphere of NiSn stability
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Inks and MEA preparation

Preparation of most performing MEA 2 - r— 2
is schematically described in Fig. 5: l .
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Fig. 5: MEA preparation steps.
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= Fuel cell tests were performed in a Probostat button-cell unit with vertical tubular
furnace configuration

Fig. 6: U/i- and P/i curves with H, or CH,
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Summary and outlook

» A NiSn-based material has been successfully developed for the direct methane SOFC

» Investigations performed in a tube reactor revealed substantial activity of the as-
prepared Ni;Sn, material for CH, steam reforming without any carbon formation

» Relatively stable redox behavior of Ni;Sn, confirmed by XRD experiments

» MEA with a Ni;Sn, anode exhibited an excellent long-term stability in humidified CH,
atmosphere at 850°C for 650 h without any substantial potential decay

» Current collector composition should be optimized
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