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Motivation
Production of electricity from biogas is expanding rapidly in Germany. Until the end of
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Influence of atmosphere of NiSn stability 

Fig 4: XRD Spectra of NiSn powder

SOFCs are usually made of a ceramic‐metallic anode (cermet), where Ni acts as catalyst
and electron‐conductor, and Yttrium‐Stabilized Zirconia (YSZ) as ionic conductor.
Lanthanum Strontium Manganite (LSM) is commonly used as cathode catalyst because
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2012 about 7500 biogas plants with a total electrical power of 3.2 GW have been
installed. Unlike wind and solar energy, biogas is available around the clock, albeit with
seasonal variations and can be stored at a large scale. Because of its high conversion
efficiency (50‐60%), the solid oxide fuel cell (SOFC) appears to be very attractive for
electricity and heat production from methane or biogas.

Background / Objectives
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Fig. 4: XRD Spectra of NiSn powder
(A) before, (B) reference pattern, (C‐F)
after test in glass tube reactor at
800°C under different atmospheres
for 4h and (G) after reduction of the
oxidized Material.

In addition to Ni3Sn2, following
phases appeared in XRD spectra
 Ni3Sn in reducing and Ar atm.
 SnO2 in CH4

 SnO2 and NiO in air

CH4

of its compatibility with zirconia‐doped electrolytes. In order to maintain a fast O2‐‐
transport, the cell should work at temperatures between 700‐900°C (fig. 1). One of the
most important challenges is related to internal reforming of natural gas and biogas
according to following reactions:

Steam reforming: CH4 + H2O 3H2 + CO
CO + H2O H2 + CO2

Anode: 2H2 + O
2‐  H2O + 2e‐

CO + O2‐  CO2 + 2e
‐

Cathode: O2 + 2e
‐  O2‐
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Inks and MEA preparation

Preparation of most performing MEA
is schematically described in Fig. 5:

 Current collecting layer (CCL) 

2

 After air exposition, nearly total
Ni3Sn2 recovery in H2 : reversible
process!
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In carbon‐rich fuel, however, CH4pyrolysis (CH4 2H2 + C) or CO disproportionation ‐
a product of CH4 partial oxidation (2CO  C + CO2) leads to carbon formation and
destruction of the Ni‐Cermet (metal dusting). A reduction of the coking can be
achieved by addition of Sn, Pb, Sb or Bi [1]. Padeste et al. [2] found that small additions
of Sn (<1%) can selectively suppress the carbon formation at Ni. As possible
explanation, a lower solubility of carbon in the NiSn‐modified material has been
postulated. This work reports on the development and catalytic evaluation of a Ni3Sn2

Fig. 1: Working principle of the Direct Methane SOFC.

U/i characteristics of NiSn‐MEA with humidified H2 and CH4

anode: Ni
 Functional Anode Layer (AL):  
Ni3Sn2+8YSZ
 Electrolyte: 3YSZ
 Functional Cathode Layer (CL): 
LSM+YSZ
 CCL cathode: LSM

Fig. 5: MEA preparation steps.
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intermetallic phase for internal methane reforming in SOFC.

[1] I. Ul‐Haque and D.L. Trimm, Catalyst for steam reforming of hydrocarbons, 1991
[2] C. Padeste, D. L. Trimm,, Catalysis Letters 17, (1993), 333‐339.

 50g of NiSn was prepared by inductive heating of stoichiometric mixtures of Ni and
Sn in a centrifugal casting oven for 5 min at roughly 1500°C under vacuum.
 Formation of Ni3Sn2 intermetallic phase
confirmed by XRD analysis (fig. 2).

Ni3Sn2 preparation and characterisation
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Fig. 6: U/i‐ and P/i curves with H2 or CH4

anode: 100 ml/min + 3 Vol.% H2O, 
cathode: 200 ml air/min). 
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 Fuel cell tests were performed in a Probostat button‐cell unit with vertical tubular
furnace configuration

 In H2 @ 900°C, Pmax decreased from 155
down to 140 mW/cm2 after only 100h.

Operating temperature was set down to
850°C

 In CH4 @ 850°C, Pmax= 53 mW/cm2

Fig. 2: (Left) NiSn after
melting process. (Right)
XRD spectra of NiSn‐
powder and reference
pattern.

Evaluation of NiSn activity for CH4 steam reforming
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 Catalytic activity of Ni3Sn2 pellet towards CH4 reforming was investigated in a
ceramic tube reactor in the temperature range of 600‐1000°C
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Cell potential remained almost 
constant over 650 h in CH4!  

Relative low power density of 
43 mW/cm2@50 mA is related 
to  high resistance of 3YSZ 
electrolyte and contact 
resistance in Probostat setup

Carbon formation observed at

Summary and outlook

ceramic tube reactor in the temperature range of 600 1000 C
 Reaction products were detected at the outlet by GC

Fig. 3: GC signals of (A) H2, (B) CO
and (C) CO2 during CH4 steam
f i ( l/ i

Main products were H2 and
CO; Ni3Sn2 material is active
for CH4 reforming

Catalytic activity increases
with increasing temperature
and CH4 partial pressure A NiSn‐based material has been successfully developed for the direct methane SOFC

 Investigations performed in a tube reactor revealed substantial activity of the as‐
prepared Ni3Sn2 material for CH4 steam reforming without any carbon formation

Relatively stable redox behavior of Ni3Sn2 confirmed by XRD experiments

Fig. 7: MEA operation in: H2 @ 100 mA/900°C
and CH4 @ 50 mA/850°C

Carbon formation observed at 
Ni current collector
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reforming (200 ml/min 20%CH4

in Ar and 10Vol.% H2O) at Ni3Sn2
at different temperatures and of
(D) H2 at 800°C in dependency of
CH4 partial pressure (Steam to
Carbon ratio: 0.1‐2).

Relatively stable redox behavior of Ni3Sn2 confirmed by XRD experiments
MEA with a Ni3Sn2 anode exhibited an excellent long‐term stability in humidified CH4

atmosphere at 850°C for 650 h without any substantial potential decay
Current collector composition should be optimized
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