

Development of a coking-resistant NiSn anode for the SOFC

N. Bogolowski, J.F. Drillet e-mail: bogolowski@dechema.de Funded by: BMWi via AiF Period: 01.04.2012 - 31.05.2014

111

Ni_sSn

Ni_sSr

Ni₃Sn SnO₂

NiO

Ni₃Sn SnO

Ni_sSn

SnO,

NiO

Ni₂Sn₂ as prepared

Ni₃Sn₂ [00-006-0414]

H./Ar after test in ai

 H_2

Ar

Ai

CH₄/Ar/H₂O

80

Motivation

Production of electricity from biogas is expanding rapidly in Germany. Until the end of 2012 about 7500 biogas plants with a total electrical power of 3.2 GW have been installed. Unlike wind and solar energy, biogas is available around the clock, albeit with seasonal variations and can be stored at a large scale. Because of its high conversion efficiency (50-60%), the solid oxide fuel cell (SOFC) appears to be very attractive for electricity and heat production from methane or biogas.

Background / Objectives

SOFCs are usually made of a ceramic-metallic anode (cermet), where Ni acts as catalyst and electron-conductor, and Yttrium-Stabilized Zirconia (YSZ) as ionic conductor. Lanthanum Strontium Manganite (LSM) is commonly used as cathode catalyst because of its compatibility with zirconia-doped electrolytes. In order to maintain a fast O2-transport, the cell should work at temperatures between 700-900°C (fig. 1). One of the most important challenges is related to internal reforming of natural gas and biogas according to following reactions: Electric Current

Steam reforming:	$\begin{array}{c} CH_4 + H_2O \twoheadrightarrow 3H_2 + CO\\ CO + H_2O \twoheadrightarrow H_2 + CO_2 \end{array}$	Fuel In	Air In
Anode:	$2H_2 + O^{2-} \rightarrow H_2O + 2e^{-}$ CO + O ²⁻ $\rightarrow CO_2 + 2e^{-}$	сн₄	
Cathode:	$O_2 + 2e^- \rightarrow O^{2-}$	Excess Fuel and Water (H ₂) CO ₂	
Fig. 1: Wo	orking principle of the Direct Methane SOFC.	Anode	Cathode

In carbon-rich fuel, however, CH_4 pyrolysis ($CH_4 \rightarrow 2H_2 + C$) or CO disproportionation a product of CH_4 partial oxidation (2CO \rightarrow C + CO₂) leads to carbon formation and destruction of the Ni-Cermet (metal dusting). A reduction of the coking can be achieved by addition of Sn, Pb, Sb or Bi [1]. Padeste et al. [2] found that small additions of Sn (<1%) can selectively suppress the carbon formation at Ni. As possible explanation, a lower solubility of carbon in the NiSn-modified material has been postulated. This work reports on the development and catalytic evaluation of a Ni₃Sn₂ intermetallic phase for internal methane reforming in SOFC.

[1] I. Ul-Hague and D.L. Trimm. Catalyst for steam reforming of hydrocarbons. 1991 [2] C. Padeste, D. L. Trimm,, Catalysis Letters 17, (1993), 333-339.

Ni₃Sn₂ preparation and characterisation

50g of NiSn was prepared by inductive heating of stoichiometric mixtures of Ni and Sn in a centrifugal casting oven for 5 min at roughly 1500°C under vacuum.

Evaluation of NiSn activity for CH₄ steam reforming

- Catalytic activity of Ni₃Sn₂ pellet towards CH₄ reforming was investigated in a ceramic tube reactor in the temperature range of 600-1000°C
- Reaction products were detected at the outlet by GC
- Main products were H₂ and CO; Ni₃Sn₂ material is active for CH₄ reforming
- > Catalytic activity increases with increasing temperature and CH₄ partial pressure

Fig. 3: GC signals of (A) H₂, (B) CO and (C) CO₂ during CH₄ steam reforming (200 ml/min 20%CH4 in Ar and 10Vol.% H₂O) at Ni₃Sn₂ at different temperatures and of (D) H₂ at 800°C in dependency of CH₄ partial pressure (Steam to Carbon ratio: 0.1-2).

Influence of atmosphere of NiSn stability

(B)

(C)

(D)

(E)

(F)

(G)

Fig. 4: XRD Spectra of NiSn powder (A) before, (B) reference pattern, (C-F) after test in glass tube reactor at 800°C under different atmospheres for 4h and (G) after reduction of the oxidized Material. a.u

In addition to Ni_3Sn_2 , following

- SnO₂ in CH₄
- SnO₂ and NiO in air
- > After air exposition, nearly total Ni₃Sn₂ recovery in H₂ : reversible process!

is schematically described in Fig. 5: Current collecting layer (CCL) anode: Ni

- Functional Anode Layer (AL): Ni₂Sn₂+8YSZ
- Electrolyte: 3YSZ

Gase

- Functional Cathode Layer (CL):
- LSM+YSZ CCL cathode: LSM

Fig. 5: MEA preparation steps

U/i characteristics of NiSn-MEA with humidified H₂ and CH₄

Fuel cell tests were performed in a Probostat button-cell unit with vertical tubular furnace configuration

\$

- Cell potential remained almost constant over 650 h in CH₄!
- Relative low power density of 43 mW/cm²@50 mA is related to high resistance of 3YSZ electrolyte and contact resistance in Probostat setup
- Carbon formation observed at Ni current collector

Fig. 6: U/i- and P/i curves with H₂ or CH₄ anode: 100 ml/min + 3 Vol.% H₂O, cathode: 200 ml air/min).

- In H₂ @ 900°C, P_{max} decreased from 155 down to 140 mW/cm² after only 100h.
- Operating temperature was set down to 850°C
- In CH₄ @ 850°C, P_{max}= 53 mW/cm²

Fig. 7: MEA operation in: H₂ @ 100 mA/900°C and CH₄ @ 50 mA/850°C

Summary and outlook

- > A NiSn-based material has been successfully developed for the direct methane SOFC Investigations performed in a tube reactor revealed substantial activity of the as-
- prepared Ni₃Sn₂ material for CH₄ steam reforming without any carbon formation
- Relatively stable redox behavior of Ni₃Sn₂ confirmed by XRD experiments
- MEA with a Ni₃Sn₂ anode exhibited an excellent long-term stability in humidified CH₄ atmosphere at 850°C for 650 h without any substantial potential decay
- Current collector composition should be optimized

BMWi is gratefully acknowledged for financial support, members of PA (Hexis AG, CeramTec GmbH, Sunfire GmbH) for samples supply and excellent cooperation, and high-temperature materials group and mechanical workshop for help and fruitful discussions.

- Ľ, phases appeared in XRD spectra
- Ni₃Sn in reducing and Ar atm.

SnO,