

Direct synthesis of hydrogen peroxide with CO₂ as solvent in a double membrane micro reactor

A. Pashkova, L. Greiner e-mail: pashkova@dechema.de Funded by: DBU / DECHEMA Period: 01.02.2009 - 31.01.2012

Motivation

H₂O₂ annual global consumption is ca. 3·10⁶ t/y Expected growth (just for the HPPO-Process) is ca. 2·105 t/y

H₂O₂ advantages:

- >Environmentally harmless
- conventional oxygen

H₂O₂ "bottle-neck":

- Expensive 0.53-0.80 € /kg
- ➤ Higher activity and selectivity than ➤ Industrial synthesis: "Anthraquinone Process" energy intensive and environmentally unfriendly

Challenges:

Safety

Wide explosion range of H₂/O₂ mixtures

Activity

Low reactant concentrations due to low solubility of H_2 and $O_2 \Rightarrow high pressure$; organic solvents; additives

Water is thermodynamically more stable

Project idea and aims

Use of membranes

enhanced process safety separate supply of H2 and O2 direct supply and even distribution of H2 und O2 along the micro channel

Micro reaction technology

- enhanced heat- and masstransfer and reduced limitations on reaction kinetics
- > improved process safety

CO₂ as medium

- non toxic, non flammable > easy separable from the products by expansion of the reaction mixture
- enhanced mass transport of the reactants

Explore a novel process window

Project aims:

- design a continuous heterogeneous process for the $\mathrm{H_2O_2}$ direct synthesis
- use both liquid or supercritical CO₂ as solvent
- develop a new type of micro structured double membrane reactor

Possible reactor design:

Project partner: IMM Institut für Mikrotechnik Mainz GmbH, Dipl.-Ing. Ulrich Krtschil, Dipl.-Ing. Christian Hofmann

Double membrane micro reactor

Planar metal ceramic membranes (Trumem®, ASPECT/Ru):

ss mesh		
mixed oxides		
30 nm		
30 x 90 cm (w, I		
180 µm		
ca. 15 µm		

Permeation properties:

- Dry membrane: at 1 bar $F(H_2) = 34 L h^{-1} cm^{-2} for \Delta P =$ 0.5 bar
- Wetted membrane: bubble point at 18 bar (Galden, σ = 16.9 dynes cm⁻¹)

Experimental set-up

Designed with interchangeable reactive part: test micro reactors for catalyst screening experiments built in at first, replaced at a later project stage with the double membrane micro reactor.

Catalyst coating

One test micro reactor = one catalyst type

20 Channels (I, w, h): 150 x 0.5 x 0.6 mm thickness of one coating layer is 50 – 60 μm

can be varied through multiple coatings

Wash coating procedure

Catalyst performance

Catalyst / Micro reactor		H ₂ /O ₂ Ratio	H ₂ Conv. [%]	H ₂ O ₂ Sel. [%]	H ₂ O ₂ Prod. [g _{H2O2} g _{Pd} ⁻¹ h ⁻¹]
5% Pd/TiO ₂ acidic precursor m(Pd) = 8 mg	_	1/2	71.8	1.5	13.6
	Orio	1/1	100.0	0.9	10.7
	gine	1/3	73.3	0.9	8.4
5% Pd/TiO ₂ acidic precursor and bromide, m(Pd) = 7.5 mg	8	1/2	5.9	6.65	4.9
	ati	1/1	6.9	1.6	1.3
	J DC	1/3	14.1	0.4	0.7
5% Pd/TiO ₂ basic precursor	Original coating procedure	1/1,5	79.6	1.1	10.5
m(Pd) = 7.7 mg		1/1,5	79.0	1.1	10.5
5% Pd/TiO ₂ basic precursor and bromide; m(Pd) = 7.2 mg		1/1	61.6	3.7	28.9
5% Pd/TiO ₂ basic precursor	After reduction	1/1	30.6	5.1	17.9
m(Pd) = 7.7 mg		17 1	30.0	J. I	11.5
1% Pd/Al ₂ O ₃ basic precursor	ter ction	1/1	2.2	20.7	50.1
m(Pd) = 0.8 mg		17 1	۷.۷	20.1	50.1

Conditions: T1(CO₂ flow) = 40°C; P1(system) = 92 - 97 bar; T2(exp.valve I) = 50°C; \(\text{PC(Sex)} = \frac{10 \text{V}_2 \text{ low}_2 - \text{V}_2 - \text{V}_3 \text{V}_3 \text{Sign}_3 - \text{V}_3 \text{V}_3 - \text{V}_3 \t

Conclusions

Experimental set-up: successfully developed and put into operation. Very stable performance was observed with both liquid and supercritical CO2.

Double membrane reactor: completed manufacturing after the choice of suitable planar metal/ceramic membranes. Extensive characterisation of membrane permeation properties for H₂ and O₂ is planned.

Catalyst screening: improved performance of reduced catalysts with productivities comparable to literature data, however, with rather low selectivity. Further optimisation of catalyst performance at different experimental conditions is planned.