Direct synthesis of hydrogen peroxide with CO₂ as solvent in a double membrane micro reactor A. Pashkova, L. Greiner e-mail: pashkova@dechema.de Funded by: DBU / DECHEMA Period: 01.02.2009 - 31.01.2012 ### Motivation H₂O₂ annual global consumption is ca. 3·10⁶ t/y Expected growth (just for the HPPO-Process) is ca. 2·105 t/y ### H₂O₂ advantages: - >Environmentally harmless - conventional oxygen ### H₂O₂ "bottle-neck": - Expensive 0.53-0.80 € /kg - ➤ Higher activity and selectivity than ➤ Industrial synthesis: "Anthraquinone Process" energy intensive and environmentally unfriendly ### Challenges: ### Safety Wide explosion range of H₂/O₂ mixtures ### Activity Low reactant concentrations due to low solubility of H_2 and $O_2 \Rightarrow high pressure$; organic solvents; additives Water is thermodynamically more stable ### Project idea and aims ### Use of membranes enhanced process safety separate supply of H2 and O2 direct supply and even distribution of H2 und O2 along the micro channel ### Micro reaction technology - enhanced heat- and masstransfer and reduced limitations on reaction kinetics - > improved process safety ### CO₂ as medium - non toxic, non flammable > easy separable from the products by expansion of the reaction mixture - enhanced mass transport of the reactants ### **Explore a novel process** window ### Project aims: - design a continuous heterogeneous process for the $\mathrm{H_2O_2}$ direct synthesis - use both liquid or supercritical CO₂ as solvent - develop a new type of micro structured double membrane reactor ### Possible reactor design: Project partner: IMM Institut für Mikrotechnik Mainz GmbH, Dipl.-Ing. Ulrich Krtschil, Dipl.-Ing. Christian Hofmann ### **Double membrane micro reactor** # Planar metal ceramic membranes (Trumem®, ASPECT/Ru): | ss mesh | | | |------------------|--|--| | mixed oxides | | | | 30 nm | | | | 30 x 90 cm (w, I | | | | 180 µm | | | | ca. 15 µm | | | | | | | # Permeation properties: - Dry membrane: at 1 bar $F(H_2) = 34 L h^{-1} cm^{-2} for \Delta P =$ 0.5 bar - Wetted membrane: bubble point at 18 bar (Galden, σ = 16.9 dynes cm⁻¹) ### **Experimental set-up** Designed with interchangeable reactive part: test micro reactors for catalyst screening experiments built in at first, replaced at a later project stage with the double membrane micro reactor. ### Catalyst coating ### One test micro reactor = one catalyst type 20 Channels (I, w, h): 150 x 0.5 x 0.6 mm thickness of one coating layer is 50 – 60 μm can be varied through multiple coatings ### Wash coating procedure ### Catalyst performance | Catalyst / Micro reactor | | H ₂ /O ₂
Ratio | H ₂ Conv.
[%] | H ₂ O ₂ Sel.
[%] | H ₂ O ₂ Prod.
[g _{H2O2} g _{Pd} ⁻¹ h ⁻¹] | |---|----------------------------|---|-----------------------------|---|---| | 5% Pd/TiO ₂ acidic precursor m(Pd) = 8 mg | _ | 1/2 | 71.8 | 1.5 | 13.6 | | | Orio | 1/1 | 100.0 | 0.9 | 10.7 | | | gine | 1/3 | 73.3 | 0.9 | 8.4 | | 5% Pd/TiO ₂ acidic precursor and bromide, m(Pd) = 7.5 mg | 8 | 1/2 | 5.9 | 6.65 | 4.9 | | | ati | 1/1 | 6.9 | 1.6 | 1.3 | | | J DC | 1/3 | 14.1 | 0.4 | 0.7 | | 5% Pd/TiO ₂ basic precursor | Original coating procedure | 1/1,5 | 79.6 | 1.1 | 10.5 | | m(Pd) = 7.7 mg | | 1/1,5 | 79.0 | 1.1 | 10.5 | | 5% Pd/TiO ₂ basic precursor and bromide; m(Pd) = 7.2 mg | | 1/1 | 61.6 | 3.7 | 28.9 | | 5% Pd/TiO ₂ basic precursor | After reduction | 1/1 | 30.6 | 5.1 | 17.9 | | m(Pd) = 7.7 mg | | 17 1 | 30.0 | J. I | 11.5 | | 1% Pd/Al ₂ O ₃ basic precursor | ter
ction | 1/1 | 2.2 | 20.7 | 50.1 | | m(Pd) = 0.8 mg | | 17 1 | ۷.۷ | 20.1 | 50.1 | Conditions: T1(CO₂ flow) = 40°C; P1(system) = 92 - 97 bar; T2(exp.valve I) = 50°C; \(\text{PC(Sex)} = \frac{10 \text{V}_2 \text{ low}_2 - \text{V}_2 - \text{V}_3 \text{V}_3 \text{Sign}_3 - \text{V}_3 \text{V}_3 - \text{V}_3 \t ## **Conclusions** Experimental set-up: successfully developed and put into operation. Very stable performance was observed with both liquid and supercritical CO2. Double membrane reactor: completed manufacturing after the choice of suitable planar metal/ceramic membranes. Extensive characterisation of membrane permeation properties for H₂ and O₂ is planned. Catalyst screening: improved performance of reduced catalysts with productivities comparable to literature data, however, with rather low selectivity. Further optimisation of catalyst performance at different experimental conditions is planned.