Karl-Winnacker-Institut

Catalytic modification of SOFC-anodes with a view to reducing their activity for internal steam reforming

M. Boder, W. Rüth, R. Dittmeyer
Contact: boder@dechema.de, rueth@dechema.de, dittmeyer@dechema.de Funded by: Siemens Aktiengesellschaft
Duration: 01.01.2001-30.11.2002

Internal steam reforming
For stationary application of solid oxide fuel cells (SOFC) it is decisive to faciliate reliable operation with hydrocarbons. In contrast to hydrogen, a widespread distribution network is already available.

Aim: Operation of SOFC with complete internal reforming of hydrocarbons

Advantages:

- thermal integration: direct cooling of the cells by the reforming reaction
chemical integration: the product of the oxidation, water vapour, can be used directly for the reforming reaction
system integration: reformer is not required \rightarrow reduction of costs

Problem: almost complete reforming in the inlet part of the cell leads to a drop in temperature

- decrease in efficiency
- leakage/breakage of cells

Solution: reduction of the active nickel surface without lowering the electrochemical activity of the anode by coating with a less active metal, e.g copper

Kinetics of the reforming reaction

 nickel/platinum nets (electr. contact) ceramic piston with gas channels separate plate (thermocouples) platinum wires (contact)

In a temperature range of $650^{\circ} \mathrm{C}-950^{\circ} \mathrm{C}$ the values measured can be described by a simple kinetic model:

(1) $\mathrm{O}_{1}+\mathrm{HO}=\mathrm{CO}+3 \mathrm{H}$	r_{5} - H_{1}	$\left(p_{\infty,}-\frac{p_{s s} \cdot F_{2}^{3_{2}}}{p_{x, j} \cdot K_{b s}}\right)$
(2) $\mathrm{CO}+\mathrm{H}_{2} \mathrm{O}=\mathrm{CO}_{2}+\mathrm{H}_{2}$	${ }_{1}{ }_{2} \mathrm{~K}_{2}$	$\left(\mathrm{P}_{0}-\frac{\mathrm{P}_{0_{2}} \mathrm{p}_{\mathrm{n}_{2}}}{\mathrm{p}_{20} \mathrm{~K}_{\mathrm{p} 2}}\right)$

Comparison of experiment and simulation for a temperature of $950^{\circ} \mathrm{C}$:

Characterization of standard cells
Planar cell units: electrolyte: $40 * 40 \mathrm{~mm}^{2}$ electrodes: $30 * 30 \mathrm{~mm}^{2}$

anode: $300 \mathrm{ml} / \mathrm{min}_{2}, 50 \% \mathrm{H}_{2} \mathrm{O}$ cathode: synth. air

Impregnation of the anode with copper

Analysis with an electron probe microscope shows a relatively constant ratio of nickel to copper throughout the depth of the anode.

Over the electrode area deviations of the ratio of nickel to copper from the average value are in the range of $+/-10 \%$. The nickel content can be controlled by the conditions of the deposition process (concentration of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$, duration). Ratios of 2-3 kg nickel per kg copper are possible.

A comparison of the activity for the internal steam reforming reaction shows that at $950^{\circ} \mathrm{C}$ the rate constant decreases by a factor of three, at $750^{\circ} \mathrm{C}$ by a factor of ten.

