

Preparation of nanoparticle-modified anodizing layers for increased alkali resistance

A. Anthes, W. Fürbeth anthes@dechema.de IGF 19082 BG | 1st April 2016 – 30th September 2018

Motivation

- Aluminium alloys are important materials in lightweight construction
- Anodizing is a frequently used surface treatment for corrosion protection of aluminium alloys in automotive and aerospace applications
- For sufficient corrosion resistance sealing is necessary, but common sealing methods (e.g. hot water sealing) are not protecting against strong bases
- Aluminium oxide is stable till a pH of 8.6 is reached, but chemical cleaners are often far more basic
- Alkali resistance can be achieved by impregnation of the surface and pores with suitable nanoparticles, e.g. from ZrO₂

Pourbaix diagram of Aluminium

- Passive region between
 pH 3.9 8.6
- At lower pH-value Al³⁺ is formed
- At higher pH-value aluminates are formed

R. Bubbico et al., Chem. Eng. Res. Des., Volume 104, 605 – 614.

Approach

Preparation of oxide-layer and impregnation

Step 1: Anodizing process→ open pores (20-60 nm)

Step 2: ZrO₂ nanoparticle based impregnation

DOLAPIX (by Zschimmer & Schwarz)

- Polyelectrolytes (charged polymers)
- Used for ceramical slurrys in industrial application
- Wraps particles for stronger repulsion
- Change of zeta-potenial
- Stabilisation of dispersions
- Lowers viscosity

Aqueous ZrO₂-dispersions

Zeta-Potential in respect to pH

Particle size with 1 wt% DOLAPIX PC 75 @ pH 8.95

Dip-coating

PAA @ AA2024 /Pore size ~ 50 nm

pH 9.14, 20 wt%, 15 mm/min

pH 9.72, 10 wt%, 15 mm/min

pH 9.01, 5 wt%, 15 mm/min

Milling of microparticles by Ultrasound

5 μm ZrO₂ (Sigma-Aldrich)

ZrO₂-particles after 15 min US-treatment

Conclusion

- Addition of 1 wt% Dolapix PC 75 results in highest zeta-potenial \sim -40 mV
- Dip-coating in 5 wt% ZrO₂-dispersion probably fills the pores
- By milling μm-sized particles costs can be reduced

9