Improvement of the γ-TiAl Oxidation Resistance by Aluminizing

V. Gauthier, F. Dettenwanger, D. Renusch, M. Schütze
Contact : gauthier@dechema.de
Funded by : Conseil Régional de Bourgogne - France
Period : 1.2.2001-31.1.2002

Introduction

In combination with good stiffness and strength, titanium aluminides offer the potential for component weight savings on the order of 50% over superalloys and steels. The target application temperature range for Ti-Al intermetallics is $600-1000^{\circ} \mathrm{C}$. However, the use of TiAl based components above $800^{\circ} \mathrm{C}$ is limited especially by their poor environmental resistance. The present study deals with aluminizing as a possible method for improving γ-TiAl high-temperature oxidation resistance.

Experimental procedure

The pack-cementation coating process was used to aluminize the surface region of a γ TiAl alloy to a potential alumina-forming phase. Coating was formed by burying $\gamma-\mathrm{TiAl}$ coupons for 5 h at $800^{\circ} \mathrm{C}$ in a powder mixture consisting of $5 \mathrm{wt} . \% \mathrm{Al}, 0.5 \mathrm{wt} . \% \mathrm{NH}_{4} \mathrm{Cl}$, and balance $\mathrm{Al}_{2} \mathrm{O}_{3}$. The aluminized samples were tested at 800,900 and $1000^{\circ} \mathrm{C}$ in laboratory air for up to 100 h .

After oxidation
After aluminizing

The aluminizing treatment resulted in the formation of a $30 \mu \mathrm{~m}$ thick adherent and free of cracks TiAl_{3} layer. This layer interdiffused rapidly with the γ-TiAl substrate during oxidation, leading to the formation of a TiAl_{2} layer at the oxide $/ \mathrm{TiAl}_{3}$ interface.
The TiAl_{3} coating on γ-TiAl showed excellent oxidation resistance in air at 900 and $1000^{\circ} \mathrm{C}$ for 10 h , forming a protective and adherent $\mathrm{Al}_{2} \mathrm{O}_{3}$ scale. At $800^{\circ} \mathrm{C}$, the oxidation process induced the formation of a thicker $\mathrm{Al}_{2} \mathrm{O}_{3}$ scale containing TiO_{2} grains. At 800,900 , and $1000^{\circ} \mathrm{C}$, the oxide was $\alpha+\theta-\mathrm{Al}_{2} \mathrm{O}_{3}$ as confirmed by Fluorescence spectroscopy analysis.

Oxidation behavior of TiAl_{3} and TiAl_{2} phases
To study the oxidation behavior of the different TiAl phases, a short term oxidation test was performed at $900^{\circ} \mathrm{C}$ on the cross section of the γ-TiAl substrate coated and oxidized at $900^{\circ} \mathrm{C}$ for 10 h in air. Surprisingly, the $\alpha-$ $\mathrm{Al}_{2} \mathrm{O}_{3}$ scale formed on the TiAl_{2} phase was significantly thinner and free of whiskers compared to the metastable θ $\mathrm{Al}_{2} \mathrm{O}_{3}$ formed on the most promising oxidation resistant TiAl_{3} phase.

100 h oxidation at $900^{\circ} \mathrm{C}$ in air
When the oxidation time was prolonged to 100 h , both the oxidation and interdiffusion processes induced a decrease of the TiAl_{3} layer thickness and an increase of the TiAl_{2} layer thickness. From 10 to 50 h exposure time, the oxide scale was only composed of $\mathrm{Al}_{2} \mathrm{O}_{3}$. After 100 h oxidation, the alumina-forming TiAl_{3} layer was only $7 \mu \mathrm{~m}$ thick, and some TiO_{2} grains were formed in the $\mathrm{Al}_{2} \mathrm{O}_{3}$ layer.

Conclusion

- An adherent oxidation resistant Al-diffusion coating was successfully formed on the surface of a γ-TiAl alloy using the pack-cementation technique. The protection was provided by aluminizing of the $\gamma-\mathrm{TiAl}$ substrate to its highest aluminide, the alumina-forming TiAl_{3} phase. - After 10 h oxidation at 900 and $1000^{\circ} \mathrm{C}$ in air, a protective and adherent $\mathrm{Al}_{2} \mathrm{O}_{3}$ layer identified as $\alpha+\theta$ phase was formed on the TiAl_{3} coating. The effectiveness of the TiAl_{3} coating was seriously affected by the TiAl_{2} phase which develops during oxidation, and after 100 h oxidation at $900^{\circ} \mathrm{C}$ in air, the formation of a protective $\mathrm{Al}_{2} \mathrm{O}_{3}$ layer was no longer maintained.

Acknowledgement

The authors would like to thank Dr. R. Vogelgesang from the MPI für Festkörperforschung in Stuttgart, and Dr. V. Shemet from the Forschungszentrum in Jülich for the fluorescence measurements.

