

Improvement of the γ -TiAl Oxidation Resistance by Aluminizing

V. Gauthier, F. Dettenwanger, D. Renusch, M. Schütze Contact : gauthier@dechema.de Funded by : Conseil Régional de Bourgogne - France Period : 1.2.2001-31.1.2002

Introduction

In combination with good stiffness and strength, titanium aluminides offer the potential for component weight savings on the order of 50% over superalloys and steels. The target application temperature range for Ti-Al intermetallics is 600-1000°C. However, the use of TiAl based components above 800°C is limited especially by their poor environmental resistance. The present study deals with aluminizing as a possible method for improving γ -TiAl high-temperature oxidation resistance.

Experimental procedure

The pack-cementation coating process was used to aluminize the surface region of a γ -TiAl alloy to a potential alumina-forming phase. Coating was formed by burying y-TiAl coupons for 5 h at 800°C in a powder mixture consisting of 5 wt.% Al, 0.5 wt.% NH₄Cl, and balance Al₂O₃. The aluminized samples were tested at 800, 900 and 1000°C in laboratory air for up to 100 h.

800°C / 10 h / air

 $\alpha + \theta - A |_{0} O_{1}$

TiAL,

6,5 6

5,5 5 4,5 (n.a.)

4

3,5

2.5

sity f

TiAl

TiAL

TiO

The aluminizing treatment resulted in the formation of a 30 µm thick adherent and free of cracks TiAl₃ layer. This layer interdiffused rapidly with the γ -TiAl substrate during oxidation, leading to the formation of a TiAl₂ layer at the oxide/TiAl₃ interface

The TiAl₃ coating on γ -TiAl showed excellent oxidation resistance in air at 900 and 1000°C for 10 h, forming a protective and adherent Al₂O₃ scale. At 800°C, the oxidation process induced the formation of a thicker AI_2O_3 scale containing TiO₂ grains. At 800, 900, and 1000°C, the oxide was $\alpha {+}\theta {-} AI_2O_3$ as confirmed by Fluorescence spectroscopy analysis.

Oxidation behavior of TiAl₃ and TiAl₂ phases

To study the oxidation behavior of the different TiAl phases, a short term oxidation test was performed at 900°C on the cross section of the γ -TiAl substrate coated and oxidized at 900°C for 10 h in air. Surprisingly, the α -Al₂O₃ scale formed on the TiAl₂ phase was significantly thinner and free of whiskers compared to the metastable θ -Al2O3 formed on the most promising oxidation resistant TiĀl₃ phase.

100 h oxidation at 900°C in air

When the oxidation time was prolonged to 100 h, both the oxidation and interdiffusion processes induced a decrease of the TiAl₃ layer thickness and an increase of the TiAl₂ layer thickness. From 10 to 50 h exposure time, the oxide scale was only composed of Al_2O_3 . After 100 h oxidation, the alumina-forming TiAl₃ layer was only 7 μm thick, and some TiO₂ grains were formed in the Al₂O₃ layer.

After oxidation

900°C / 10 h / air

1000°C / 10 h / air

900°C / 1 h / air

Conclusion

- An adherent oxidation resistant Al-diffusion coating was successfully formed on the surface of a $\gamma\text{-TiAl}$ alloy using the pack-cementation technique. The protection was provided by aluminizing of the γ -TiAl substrate to its highest aluminide, the alumina-forming TiAl₃ phase.
- After 10 h oxidation at 900 and 1000°C in air, a protective and adherent Al₂O₃ layer identified as $\alpha + \theta$ phase was formed on the TiAl₃ coating. The effectiveness of the TiAl, coating was seriously affected by the TiAl₂ phase which develops during oxidation, and after 100 h oxidation at 900°C in air, the formation of a protective Al2O3 layer was no longer maintained.

Acknowledgement

The authors would like to thank Dr. R. Vogelgesang from the MPI für Festkörperforschung in Stuttgart, and Dr. V. Shemet from the Forschungszentrum in Jülich for the fluorescence measurements.