

Anti-Adhesive Coatings for High Temperature Applications

A. Soleimani Dorcheh, M. C. Galetz, M. Schütze

Email: soleimani@dechema.de Funded by: AiF Period: 01.10.2014-01.03.2017

Motivation Challenge Lower heat transfer in heat exchangers Adhesion Unplanned Increasing (sticking, caking) shutdowns of Flue Ash Costs **Particles** Accelerated Corrosion

Corrosion, erosion, sticking and caking are wide spread problems in power plants, caused by aggressive flue ashes with corrosive components such as sulfur, chlorine and alkali based salts. Furthermore, the use/co-firing of a diversity of biomass or alternative fuels with lower quality enhances the problems arising from adhesion (caking, sticking) corrosion, and erosion issues. As a result, the efficiency of the power plant decreases (lower heat transfer) and periodically service maintained shutdowns have to be planned to clean the facilities and to change damaged parts generating costs from 100,000 to €1 Million/day.

Proposed Solution

sol-gel-treated layer Erosion resistant thermally sprayed Substrate (tube steels)

The innovative concept proposed in this research project combines thermally sprayed coatings functionalized with a sol-gel layer providing low wettability/sticking. FeCrAl alloy based thermally sprayed coatings including targeted hard materials, such as Cr-carbides, are investigated to evaluate their potential for corrosion and erosion protection.

The thin sol-gel layer, in combination with the thermally sprayed coatings, should reduce the sticking ability of aggressive liquid phases or solid flue ash particles.

Room Temperature CAM

Sol-Gel Coating (ZrO₂)

Coating process

Thermal spray coatings:

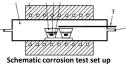
- Method: Arc Plasma Spray
- FeCrAl
- FeCrAl + embeded Cr₃C₂

Sol-Gel overlayer coating

Method: dip coating

Composition: ZrO₂

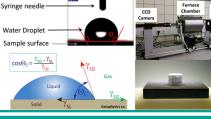
Flue Ash Analysis


Flue ash particle

Corrosion Test

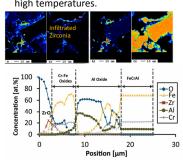
Materials and Methods

Method: ISO 17248:2015


Embedding test under flue ash synthetic air

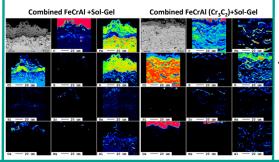
being fully embedded in the ash

Contact angle measurement


than 10 µm. **Coating Structure**

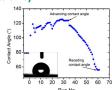
The final coating structure is a zirconia infiltrated FeCrAl.

Protective Al₂O₃ layer forms upon oxidation at high temperatures.

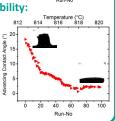

SiO₂ Fe₂O₃ Al₂O₃ CaO MgO Na₂O SO₃ other 2.3 32.7 7.7 Sulphates, silicates, and oxides

More than 80% of the flue ash particles are smaller

Corrosion behavior:


Cross section microstructures after 300h embedding in flue ash at 650°C.

Results


Room Temperature Wettability:

Dynamic contact angle measurements reveal maximum contact angle of water droplet (124 $^{\circ}$) on the coating surface showing its hydrophobic nature at room temperature.

High Temperature Wettability:

However, contact angle measurements at high temperatures with a simulated salt mixture (CaSO₄, K₂SO₄ and Na₂SO₄) show a much smaller contact angle indicating high wettability of the molten salt on the coating!

Acknowledgement

Financial support of the German Ministry of Economics and Technology through the German Federation for Industrial Research ("Arbeitskreis industrieller Forschungs-vereinigungen", IGF-Nr. 126EN/2) is gratefully acknowledged.

Partners

