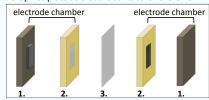


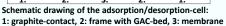
KEStro - Waste water treatment plants as stabilizers for power grids

S. Hild, J. Schuster, R. Simon, J. Tchangou, K.-M. Mangold e-mail: hild@dechema.de Funded by: BMBF Period: 01.05.2014 – 30.04.2017

Objective

- Increasing amount of renewable energy.
- Innovative solutions for the balance of supply and demand in power grids are needed.
- Waste water treatment plants can be used for the stabilization of power supply systems.
- In a microbial fuel cell (MFC) microorganisms produce energy from organic substances in waste water. This can be used as a renewable and permanent available energy source.
- The MFC is combined with a novel process for the removal of micropollutants from waste water that can be operated in times of excess supply.
- → Cells in laboratory- and pilot-plant-scale were designed and constructed for both systems.


GAC GAC


Schematic drawing of the 3-step process for the removal of micropollutants.

Removal of micropollutants

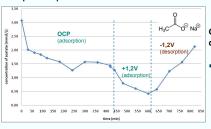
Adsorption/desorption cells

- Two electrode chambers divided by a membrane.
- Each chamber is filled with a GAC packed bed.
- Graphite plate as electric contact for the GAC.

Pilot plant for adsorption and desorption: 3 separate cells, 50 x 15cm², 360mL GAC/chamber

diamond electrodes (DIACHEM®) in a separate cell.

Experiments on electrochemical degradation are carried out at CONDIAS GmbH, Itzehoe.


• 3. step: electrochemical degradation of the desorbed substances on boron-doped

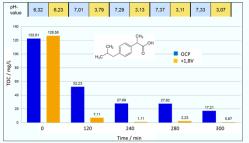
• 1. step: adsorption of micropollutants from waste water effluent on granular activated

The pilot plant is operated in the waste water treatment plant Steinhof in Braunschweig.

1. step: adsorption on GAC

carbon (GAC).

• 2. step: desorption via polarization of the GAC.

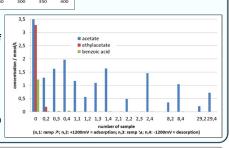

Change of acetate concentration during polarization of the GAC.

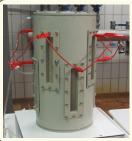
 Enhanced adsorption on polarized GAC. Concentration of ibuprofen in solution during polarization of GAC.

- Ibuprofen is desorbed at high voltage.
- Increase of pH by addition of NaOH also leads to desorption.

Adsorption of ibuprofen on polarized (yellow) and unpolarized (blue) GAC.

- Enhanced adsorption on polarized GAC.
- Influence of pH on adsorption performance.




Cathodic and anodic polarization of GAC in the presence of different molecules.

0,05

2. step: electrochemical desorption

- Various adsorption/desorption cycles are possible.
- Different molecules show different adsorption/desorption behaviour.

Microbial fuel cell

- Anode: biofilm grown on carbon felt.
- Cathode: gas-diffusion electrode as open-to-air cathode.
- Round body with 4 or 8 symmetrically distributed gas diffusion electrodes
- No membrane needed to separate anode and cathode compartment.

Microbial experiments are carried out at TZW, Karlsruhe (lab-scale) and at the waste water treatment plant Steinhof in Braunschweig (pilot plant).

Photograph of the microbial fuel cell (pilot plant).

Electrode area: working electrode: 2100cm², counter electrode: 480cm²; volume: 6L.

Project partner:

