Electro-enzymatic hydroxylation of ethylbenzene by the evolved unspecific peroxygenase of Agrocybe aegerita

A. E. W. Horst, S. Bormann, J. Meyer, M. Steinhagen, R. Ludwig, A. Drews, M. Ansorge-Schumacher, D. Holtmann

The unspecific peroxygenase from the fungus Agrocybe aegerita (AaeUPO) is an up-and-coming biocatalyst that is able to perform specific oxyfunctionalizations of various substrates. Due to inactivation at excess concentrations of its co-substrate H2O2, AaeUPO’s technical application is still limited. This study aims to promote catalyst efficiency via electrochemical in situ supply of H2O2, using an evolved variant of AaeUPO on the example of ethylbenzene hydroxylation. Total turnover numbers of up to 400,000 molproduct molAaeUPO−1 and space-time-yields of up to 25 g L−1 d−1 were achieved in the electro-enzymatic system. These numbers are in the upper range of published data. The presented system stands out by its very high atom economy. Thus, combining electrochemistry and biocatalysis is one step closer towards the first application of peroxygenases in an industrial process.

Link zur Publikation

zurück
Jetzt Stifter werden